Linear and Quasi-linear Equations of Parabolic TypeAmerican Mathematical Soc., 1988 - 648 páginas |
Comentarios de usuarios - Escribir una reseña
No hemos encontrado ninguna reseña en los sitios habituales.
Índice
XLI | 323 |
XLII | 328 |
XLIII | 338 |
XLIV | 341 |
XLV | 351 |
XLVI | 356 |
XLVII | 364 |
XLVIII | 376 |
IX | 74 |
X | 82 |
XI | 89 |
XII | 102 |
XIII | 110 |
XIV | 122 |
XV | 128 |
XVI | 133 |
XVII | 134 |
XVIII | 139 |
XIX | 145 |
XX | 153 |
XXI | 167 |
XXII | 172 |
XXIII | 181 |
XXIV | 191 |
XXV | 194 |
XXVI | 204 |
XXVII | 210 |
XXVIII | 219 |
XXIX | 224 |
XXX | 233 |
XXXI | 239 |
XXXII | 241 |
XXXIII | 252 |
XXXIV | 255 |
XXXV | 259 |
XXXVI | 261 |
XXXVII | 273 |
XXXVIII | 288 |
XXXIX | 294 |
XL | 317 |
XLIX | 389 |
L | 395 |
LI | 406 |
LII | 414 |
LIII | 417 |
LIV | 418 |
LV | 423 |
LVI | 430 |
LVII | 438 |
LVIII | 444 |
LIX | 449 |
LX | 475 |
LXI | 492 |
LXII | 496 |
LXIII | 503 |
LXIV | 515 |
LXV | 516 |
LXVI | 524 |
LXVII | 533 |
LXVIII | 556 |
LXIX | 560 |
LXX | 571 |
LXXI | 574 |
LXXII | 579 |
LXXIII | 583 |
LXXIV | 585 |
LXXV | 588 |
LXXVI | 596 |
LXXVII | 597 |
LXXVIII | 604 |
LXXIX | 615 |
Otras ediciones - Ver todo
Linear and Quasi-linear Equations of Parabolic Type Olʹga A. Ladyženskaja,V. A. Solonnikov,Nina N. Ural'ceva Vista previa restringida - 1968 |
Linear and Quasi-linear Equations of Parabolic Type Olʹga A. Ladyženskaja,V. A. Solonnikov,Nina N. Ural'ceva No hay ninguna vista previa disponible - 1988 |
Términos y frases comunes
addition analogous arbitrary assertions assume assumptions belongs boundary value problems bounded carried Cauchy problem Chapter Chapter II classical coefficients connection consequently consider constant continuous converge cylinder defined definition depending derivatives determined differential distance domain dx dt easily elements equal to zero equation equation 1.1 established estimate example existence fact finite fixed formulate function function u(x given gives hence Hölder holds identity indicated inequality initial integral known lateral Lemma limit linear means method namely necessary norm obtain operator parabolic parameters positive possible potential present proof properties proved quantities relation respect restrictions result right side satisfy smooth solution solvability space sufficiently Suppose surface Theorem Theorem 6.1 tion transform unique valid virtue vrai max дх