Partial Differential EquationsThis is the second edition of the now definitive text on partial differential equations (PDE). It offers a comprehensive survey of modern techniques in the theoretical study of PDE with particular emphasis on nonlinear equations. Its wide scope and clear exposition make it a great text for a graduate course in PDE. For this edition, the author has made numerous changes, including a new chapter on nonlinear wave equations, more than 80 new exercises, several new sections, a significantly expanded bibliography. About the First Edition: I have used this book for both regular PDE and topics courses. It has a wonderful combination of insight and technical detail. ... Evans' book is evidence of his mastering of the field and the clarity of presentation. --Luis Caffarelli, University of Texas It is fun to teach from Evans' book. It explains many of the essential ideas and techniques of partial differential equations ... Every graduate student in analysis should read it. --David Jerison, MIT I usePartial Differential Equationsto prepare my students for their Topic exam, which is a requirement before starting working on their dissertation. The book provides an excellent account of PDE's ... I am very happy with the preparation it provides my students. --Carlos Kenig, University of Chicago Evans' book has already attained the status of a classic. It is a clear choice for students just learning the subject, as well as for experts who wish to broaden their knowledge ... An outstanding reference for many aspects of the field. --Rafe Mazzeo, Stanford University |
Comentarios de usuarios - Escribir una reseña
Reseña de usuario - Marcar como inadecuado
This is the text book for the course in partial differential equations
Índice
CXXXV | 414 |
CXXXVI | 418 |
CXXXVII | 421 |
CXXXVIII | 423 |
CXXXIX | 429 |
CXL | 433 |
CXLI | 434 |
CXLII | 439 |
17 | |
18 | |
19 | |
20 | |
21 | |
25 | |
26 | |
33 | |
XXIII | 41 |
XXIV | 44 |
XXV | 45 |
XXVI | 51 |
XXVII | 55 |
XXVIII | 62 |
XXIX | 65 |
XXX | 67 |
XXXI | 80 |
XXXII | 82 |
XXXIII | 84 |
XXXIV | 90 |
XXXV | 91 |
XXXVI | 92 |
XXXVII | 94 |
XXXVIII | 96 |
XXXIX | 99 |
XL | 102 |
XLI | 105 |
XLII | 109 |
XLIII | 114 |
XLIV | 115 |
XLV | 120 |
XLVI | 128 |
XLVII | 135 |
XLVIII | 136 |
XLIX | 143 |
L | 148 |
LI | 153 |
LII | 156 |
LIII | 161 |
LIV | 165 |
LV | 167 |
LVI | 168 |
LVII | 172 |
LVIII | 176 |
LX | 185 |
LXI | 187 |
LXIII | 196 |
LXIV | 203 |
LXV | 206 |
LXVII | 208 |
LXVIII | 209 |
LXIX | 211 |
LXX | 216 |
LXXI | 218 |
LXXII | 229 |
LXXIII | 232 |
LXXIV | 237 |
LXXV | 239 |
LXXVI | 244 |
LXXVII | 249 |
LXXVIII | 251 |
LXXX | 253 |
LXXXI | 255 |
LXXXII | 258 |
LXXXIII | 261 |
LXXXIV | 264 |
LXXXVI | 265 |
LXXXVII | 266 |
LXXXVIII | 268 |
LXXXIX | 271 |
XC | 275 |
XCI | 276 |
XCII | 280 |
XCIII | 284 |
XCIV | 286 |
XCV | 289 |
XCVI | 291 |
XCVII | 295 |
XCVIII | 296 |
XCIX | 297 |
C | 299 |
CII | 301 |
CIII | 305 |
CIV | 309 |
CV | 311 |
CVIII | 313 |
CIX | 315 |
CX | 317 |
CXI | 320 |
CXII | 326 |
CXIII | 327 |
CXIV | 334 |
CXV | 344 |
CXVII | 347 |
CXVIII | 351 |
CXIX | 354 |
CXX | 360 |
CXXI | 365 |
CXXII | 370 |
CXXIII | 371 |
CXXVII | 372 |
CXXVIII | 375 |
CXXIX | 380 |
CXXX | 389 |
CXXXI | 398 |
CXXXIII | 401 |
CXXXIV | 408 |
CXLIII | 441 |
CXLIV | 446 |
CXLV | 449 |
CXLVI | 451 |
CXLVIII | 453 |
CXLIX | 458 |
CL | 459 |
CLI | 465 |
CLII | 467 |
CLIII | 472 |
CLIV | 475 |
CLV | 480 |
CLVI | 482 |
CLVII | 483 |
CLVIII | 486 |
CLIX | 488 |
CLXI | 492 |
CLXII | 495 |
CLXIII | 497 |
CLXIV | 501 |
CLXV | 507 |
CLXVI | 511 |
CLXVII | 512 |
CLXVIII | 513 |
CLXIX | 520 |
CLXX | 525 |
CLXXI | 527 |
CLXXIV | 533 |
CLXXV | 534 |
CLXXVI | 538 |
CLXXVII | 543 |
CLXXVIII | 547 |
CLXXX | 551 |
CLXXXI | 554 |
CLXXXIII | 555 |
CLXXXIV | 560 |
CLXXXVI | 565 |
CLXXXVII | 571 |
CLXXXVIII | 573 |
CLXXXIX | 577 |
CXC | 579 |
CXCII | 581 |
CXCIII | 583 |
CXCIV | 586 |
CXCV | 590 |
CXCVI | 591 |
CXCVII | 592 |
CXCVIII | 594 |
CXCIX | 600 |
CC | 603 |
CCI | 606 |
CCII | 609 |
CCIV | 612 |
CCV | 615 |
CCVI | 621 |
CCVII | 624 |
CCVIII | 625 |
CCIX | 632 |
CCX | 635 |
CCXI | 639 |
CCXII | 641 |
CCXIII | 642 |
CCXIV | 646 |
CCXV | 649 |
CCXVI | 654 |
CCXVII | 657 |
CCXVIII | 659 |
CCXXI | 663 |
CCXXII | 666 |
CCXXIII | 670 |
CCXXV | 674 |
CCXXVI | 676 |
CCXXVII | 679 |
CCXXVIII | 686 |
CCXXIX | 687 |
CCXXX | 689 |
CCXXXI | 691 |
CCXXXII | 696 |
CCXXXIII | 697 |
CCXXXIV | 698 |
CCXXXV | 699 |
CCXXXVI | 703 |
CCXXXVII | 704 |
CCXXXVIII | 705 |
CCXXXIX | 706 |
CCXL | 710 |
CCXLI | 711 |
CCXLII | 712 |
CCXLIII | 713 |
CCXLIV | 716 |
CCXLV | 717 |
CCXLVI | 718 |
CCXLVII | 719 |
CCXLIX | 720 |
CCL | 721 |
CCLI | 723 |
CCLII | 724 |
CCLIII | 728 |
CCLIV | 729 |
CCLV | 730 |
CCLVI | 731 |
CCLVII | 732 |
CCLVIII | 733 |
CCLIX | 735 |
741 | |
Términos y frases comunes
assertion Assume boundary conditions boundary-value problem bounded calculate Chapter choose coefficients compact support compute Consequently conservation laws converges convex curve dadt deduce define DEFINITION denote eigenvalues energy entropy estimate Euler–Lagrange equation Example exists a constant follows function f Furthermore given Hamilton–Jacobi equation heat equation Hence hyperbolic identity implies inequality initial initial-value problem integral L(Du Lemma Lipschitz continuous LP(U mapping maximum principle minimizer nonlinear nonnegative notation open set Oxo Oxo parabolic partial differential equations proof of Theorem prove recall satisfies second-order Section semigroup sequence smooth function smooth solution Sobolev spaces solves subset Suppose theory tion u e H'(U uniformly v e H'(U variables viscosity solution wave equation weak solution weakly write zero