Evolution of Wild Emmer and Wheat Improvement: Population Genetics, Genetic Resources, and Genome Organization of Wheat's Progenitor, Triticum Dicoccoides

Portada
Springer Science & Business Media, 29 ene 2002 - 364 páginas
This book is about the contribution to evolutionary theory and agricultural technology of one of humankind's most dramatic imitations of the evolu tionary process, namely crop domestication, as exemplified by the progenitor of wheat, Triticum dicoccoides. This species is a major model organism and it has been studied at the Institute of Evolution, University of Haifa, since 1979. The domestication by humans of wild plants to cultivated ones during the last ten millennia is one of the best demonstrations of evolution. It is a process that has been condensed in time and advanced by artificial rather than natural selection. Plant and animal domestication revolutionized human cultural evolution and is the major factor underlying human civilization. A post-Pleistocene global rise in temperature following the ice age, i.e., climatic-environmental factors, may have induced the expansion of econom ically important thermophilous plants and in turn promoted complex forag ing and plant cultivation. The shift from foraging to steady production led to an incipient agriculture varying in time in various part of the world. In the Levant, agriculture developed out of an intensive specialized exploitation of plants and animals. Natufian sedentism, followed by rapid population growth and resource stress, induced by the expanding desert, coupled with available grinding technology, may have triggered plant domestication.
 

Índice

II
3
III
4
IV
6
V
8
VI
9
VII
11
VIII
12
IX
14
XC
159
XCI
160
XCII
162
XCIII
164
XCIV
165
XCV
166
XCVI
167
XCVII
170

X
16
XI
19
XII
21
XIII
23
XIV
25
XV
26
XVI
31
XVII
43
XVIII
44
XIX
46
XX
47
XXI
48
XXII
49
XXIII
50
XXIV
53
XXV
54
XXVI
55
XXVII
57
XXVIII
58
XXIX
59
XXX
60
XXXI
61
XXXII
62
XXXIII
63
XXXIV
66
XXXV
67
XXXVI
71
XXXVII
72
XXXVIII
75
XXXIX
77
XLI
78
XLII
80
XLIII
81
XLIV
83
XLV
84
XLVI
85
XLVII
86
XLVIII
87
XLIX
88
L
91
LI
93
LII
99
LIII
100
LIV
101
LV
102
LVI
105
LVII
108
LVIII
111
LIX
114
LX
115
LXI
116
LXII
117
LXIII
118
LXIV
120
LXV
122
LXVII
124
LXVIII
125
LXIX
126
LXXII
128
LXXIII
129
LXXIV
130
LXXV
131
LXXVI
133
LXXVIII
137
LXXIX
138
LXXX
141
LXXXI
144
LXXXII
146
LXXXIII
147
LXXXIV
148
LXXXV
151
LXXXVI
152
LXXXVII
153
LXXXVIII
156
LXXXIX
158
XCVIII
172
XCIX
173
C
174
CI
177
CII
179
CIII
181
CIV
182
CVII
183
CVIII
187
CIX
189
CX
193
CXI
194
CXII
195
CXV
198
CXVI
203
CXVII
206
CXVIII
207
CXIX
212
CXX
213
CXXI
214
CXXIV
216
CXXV
217
CXXVI
220
CXXVII
221
CXXVIII
225
CXXXI
229
CXXXV
230
CXXXVI
231
CXXXVII
232
CXXXVIII
239
CXXXIX
241
CXL
242
CXLI
243
CXLII
252
CXLIII
254
CXLIV
255
CXLV
256
CXLVIII
258
CXLIX
262
CL
265
CLI
267
CLII
269
CLIII
273
CLIV
274
CLV
275
CLVII
277
CLVIII
279
CLIX
284
CLXII
285
CLXIII
286
CLXIV
293
CLXV
297
CLXVI
299
CLXVII
300
CLXVIII
301
CLXIX
302
CLXX
303
CLXXI
305
CLXXII
306
CLXXIII
307
CLXXIV
308
CLXXV
309
CLXXVI
311
CLXXVII
312
CLXXVIII
314
CLXXIX
315
CLXXX
317
CLXXXI
319
CLXXXII
320
CLXXXIII
321
CLXXXIV
322
CLXXXV
323
CLXXXVI
353
Página de créditos

Otras ediciones - Ver todo

Términos y frases comunes

Pasajes populares

Página 330 - T., and Zamir, D. (2000). A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc. Natl. Acad Sci. USA 97, 4718-4723.
Página 324 - Bell, CJ and Ecker, JR (1994) Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics 19, 137-144.

Información bibliográfica