Mathematical Masterpieces: Further Chronicles by the Explorers

Springer Science & Business Media, 16 oct 2007 - 340 páginas
0 Reseñas
Las reseñas no se verifican, pero Google comprueba si hay contenido falso y lo retira una vez identificado
In introducing his essays on the study and understanding of nature and e- lution, biologist Stephen J. Gould writes: [W]e acquire a surprising source of rich and apparently limitless novelty from the primary documents of great thinkers throughout our history. But why should any nuggets, or even ?akes, be left for int- lectual miners in such terrain? Hasn’t the Origin of Species been read untold millions of times? Hasn’t every paragraph been subjected to overt scholarly scrutiny and exegesis? Letmeshareasecretrootedingeneralhumanfoibles. . . . Veryfew people, including authors willing to commit to paper, ever really read primary sources—certainly not in necessary depth and completion, and often not at all. . . . I can attest that all major documents of science remain cho- full of distinctive and illuminating novelty, if only people will study them—in full and in the original editions. Why would anyone not yearn to read these works; not hunger for the opportunity? [99, p. 6f] It is in the spirit of Gould’s insights on an approach to science based on p- mary texts that we o?er the present book of annotated mathematical sources, from which our undergraduate students have been learning for more than a decade. Although teaching and learning with primary historical sources require a commitment of study, the investment yields the rewards of a deeper understanding of the subject, an appreciation of its details, and a glimpse into the direction research has taken. Our students read sequences of primary sources.

Comentarios de usuarios - Escribir una reseña

No hemos encontrado ninguna reseña en los sitios habituales.


The Bridge Between Continuous and Discrete
Finding Our Roots
Curvature and the Notion of Space 159

Otras ediciones - Ver todo

Términos y frases comunes

Pasajes populares

Página 5 - If a straight line one extremity of which remains fixed be made to revolve at a uniform rate in a plane until it returns to the position from which it started, and if, at the same time as the straight line is revolving, a point move at a uniform rate along the straight line, starting from the fixed extremity, the point will describe a spiral in the plane.

Información bibliográfica