Imágenes de página
PDF
ePub

A

XII

THE MINERAL DEPTHS

GES before the dawn of civilization, primitive

man had learned to extract certain ores and metals from the earth by subterranean mining. Such nations as the Egyptians, for example, understood mining in most of its phases, and worked their mines in practically the same manner as all succeeding nations before the time of the introduction of the steam engine. The early Britons were good miners and the products of their mines were carried to the Orient by the Phoenicians many centuries before the Christian era. The Romans were, of course, great miners, and remains of the Roman mines are still in existence, particularly good examples being found in Spain.

Even the aborigines of North America possessed some knowledge of mining, as attested by the ancient copper mines in the Lake Superior region, although by the time of the discovery of America, and probably many centuries before, the interloping races of Indians who had driven out or exterminated the Lake Superior copper mines had forgotten the art of mining, if indeed they had ever learned it. But the fact that their predecessors had worked the copper mines is shown by the number of stone mining implements found in the ancient excavations about Lake Superior,

these implements being found literally by cart loads in some places.

The great progress in mining methods, however, as in the case of most other mechanical arts, began with the introduction of steam as a means of utilizing energy; and another revolution is in rapid progress owing to the perfection of electrical apparatus for furnishing power, heat, and light. Methods of mining a hundred years ago were undoubtedly somewhat in advance of the methods used by the ancients; but the gap was not a wide one, and the progress made by decades after the introduction of steam has been infinitely greater than the progress made by centuries previous to that time.

This progress, of course, applies to all kinds of mines and all phases of mining; but steam and electricity are not alone responsible for the great nineteenthcentury progress. Geology, an unknown science a century ago, has played a most active and important part; and chemistry, whose birth as a science dates from the opening years of the nineteenth century, is responsible for many of the great advances.

Obviously a very important feature of any mine must be its location, and the determination of this must always constitute the principal hazard in practical mining. Prospecting, or exploring for suitable mining sites, has been an important occupation for many years, and has in fact become a scientific one recently. Formerly mines were frequently stumbled upon by accident, but such accidental discoveries are becoming less and less frequent. The prospector

Geology, for example, region in which his

now draws largely upon the knowledge of the scientist to aid him in his search. assists him in determining the mines may be found, if it cannot actually point out the location for sinking his shaft; and at least a rough knowledge of botany and chemistry is an invaluable aid to him. It is obvious that it would be useless to prospect for coal in a region where no strata of rocks formed during the Carboniferous or coal-forming age are to be found within a workable distance below the surface of the earth. The prospector must, therefore, direct his efforts within "geological confines" if he would hope to be successful, and in this he is now greatly aided by the geological surveys which have been made of almost every region in the United States and Europe.

An example of what science has done in this direction was shown a few years ago in a western American town during one of the "oil booms" that excited so many communities at that time. In the neighborhood of this town evidences of oil had been found from time to time-some of them under peculiar and suspicious circumstances, to be sure-and the members of the community were in an intense state of excitement over the possibility of oil being found on their lands. Prices of land jumped to fabulous figures, and the few land-owners that could be induced to part with their farms became opulent by the transactions. An "oil expert" appeared upon the scene about this time --just "happening to drop in"-who declared, after an examination, that the entire region abounded in

oil. He backed up his assertion by offering to stake his experience against the capital of a company which was formed at his suggestion. Before any wells were actually started, however, a prudent member of the company consulted the State geologist on the subject, receiving the assurance that no oil would be found in the neighborhood. Strangely enough the word of the man of science triumphed over that of the "oil expert," and although some tentative borings were made on a minor scale, no great amount of money was sunk. It developed afterwards that the evidences of oil found from time to time had been the secret work of the "expert."

In general, prospecting for oil differs pretty radically from prospecting for most other minerals. A very common way of locating an ore-mine is by the nature of the out-crop, that is, the broken edges of strata of rocks protruding from hillsides, or tilted at an angle on level areas. If the ore-bearing vein is harder than the surrounding strata it will be found as a jutting edge, protruding beyond the surface of the other layers of rocks which, being softer, are more easily worn away. On the other hand, if this stratum is soft or decomposable it will show as a depression, or "sag" as it is called. Of course such protrusions and depressions may only be seen and examined where the rocks themselves are exposed; vegetation, drift, and snow preventing such observations. But the vegetation may in itself serve as a guide to the experienced prospector in determining the location of a mine, peculiar mineral conditions being conducive to the

growth of certain forms of vegetation, or to the arrangement of such growth. Alterations in the color of the rocks on a hillside are also important guides, as such discolorations frequently indicate that oxidizable minerals are located above.

In hilly or mountainous regions, where the underlying rocks are covered with earth, portions of these surfaces are sometimes uncovered by the method known as "booming." In using this method the prospector selects a convenient depression near the top of a hill and builds a temporary dam across the point corresponding to the lowest outlet. When snow and rain have turned the basin so formed into a lake, the dam is burst and the water rushing down the hillside cuts away the overlying dirt, exposing the rocks beneath. This method is effective and inexpensive.

The beds of streams, particularly those in hilly and mountainous regions, are fertile fields for prospecting, particularly for precious metals. Stones and pebbles found in the bed are likely to reveal the ore-foundations along the course of the stream, and the shape of these pebbles helps in determining the approximate location of such foundations. An ore-bearing pebble, well worn and rounded, has probably traveled some little distance from its original source, being rounded and worn in its passage down the stream. On the other hand, if it is still angular it has come a much shorter distance, and the prospector will be guided accordingly in his search for the ore-vein.

But prospecting is not limited to these simple sur

« AnteriorContinuar »