Imágenes de página
PDF
ePub

only thrust during which work is done; the returning piston expels the expanded gas, completing the cycle. Thus there are three ineffective piston thrusts to one effective thrust. Nevertheless, the engine has proved a useful one for many purposes.

This so-called Otto cycle has been adopted in almost all gas and oil engines, the later improvements being in the direction of still higher compression, and in the substitution of lift for slide valves. There has been a steady increase in the size and power of such engines, the large ones usually introducing two or more working cylinders so as to secure uniform driving. Cheap forms of gas have been employed such as those made by decomposing water by incandescent fuel, and it has been proved possible thus to operate gas-power plants on a commercial scale in competition with the most economical steam installations.

A practical modification of vast importance was introduced when it was suggested that a volatile oil be employed to supply the gas for operation in an internal combustion engine. There was no new principle involved in this idea, and the Otto cycle was still employed as before; but the use of the volatile oil-either a petroleum product or alcohol-made possible the compact portable engine with which everyone is nowadays familiar through its use in automobiles and motor boats. The oil commonly used is gasoline which is supplied to the cylinder through a so-called carburettor in which the vapors of gasoline are combined with ordinary air to make an explosive mixture. The introduction of this now familiar type of motor is to a large extent due to

Herr G. Daimler, who in 1884 brought out a light and compact high-speed oil engine. About ten years later Messrs. Panhard and Levassor devised the form of motor which has since been generally adopted. Few other forms of mechanisms are better known to the general public than the oil engine with its two, four, six, or even eight cylinders, as used in the modern automobile. As everyone is aware, it furnishes the favorite type of motor, combining extraordinary power with relative lightness, and making it feasible to carry fuel for a long journey in a receptacle of small compass.

With the gas engines a complication arises precisely opposite to that which is met with in the case of the cylinder of the steam engine the tendency, namely, to overheating of the cylinder. To obviate this it is customary to have the cylinder surrounded by a water jacket, though air cooling is used in certain types of machines. About fifty per cent. of the total heat otherwise available is lost through this unavoidable expedient.

The rapid introduction of the gas engine in recent years suggests that this type of engine may have a most important future. It has even been predicted that within a few years most trans-Atlantic steamers will be equipped with this type of engine, producing their own gas in transit. It is possible, then, that through this medium the old piston-and-cylinder engine may retain its supremacy, as against the turbine. For the moment, at any rate, the gas engine is gaining popularity, not merely in its application to the automobile, but for numerous types of small stationary engines as well.

In this connection it will be interesting to quote the report of the Special Agent of the Twelfth Census of the United States, as showing the status of gas engines and steam engines in the year 1902.

"The decade between 1890 and 1900," he says, "was a period of marked development in the use of gas engines, using that term to denote all forms of internal combustible engines, in which the propelling force is the explosion of gaseous or vaporous fuel in direct contact with a piston within a closed cylinder. This group embraces those engines using ordinary illuminating gas, natural gas, and gas made in special producers installed as a part of the power plant, and also vaporised gasoline or kerosene. This form of power for the first time is an item of consequence in the returns of the present census, and the very large increase in the horse-power in 1900 as compared with 1890 indicates the growing popularity of this class of motive power.

"In 1890 the number of gas engines in use in manufacturing plants was not reported, but their total power amounted to only 8,930 horse-power, or one-tenth of one per cent of the total power utilized in manufacturing operations. In 1900, however, 14,884 gas engines were reported, with a total of 143,850 horse-power, or 1.3 per cent of the total power used for manufacturing purposes. This increase from 8,930 horse-power to 143, 850 horse-power, a gain of 134,920 horse-power, is proportionately the largest increase in any form of primary power shown by a comparison of the figures of the

Eleventh and Twelfth censuses, amounting to 1,510.9 per cent.

"Within the past decade, and more particularly during the past five years, there has been a marked increase in the use of this power in industrial establishments for driving machinery, for generating electricity, and for other kindred uses. At the same time, internalcombustion engines have increased in popularity for uses apart from manufacturing, and the amount of this kind of power in use for all purposes in 1900 was, doubtless, very much larger than indicated by the figures relating to manufacturing plants alone.

"The average horse-power per gas engine in 1900 was 9.7 horse-power. There are no available statistics upon which to base a comparison of this average with the average for 1890, but it is doubtful if there has been any very material change in ten years; for while gas engines are built in much larger sizes than ever before, there has been also a great increase in the number of small engines for various purposes.

"The large increase in the use of internal-combustion engines has been due to the rapid improvements that have been made in them, their increased efficiency and economy, their decreased cost, and the wider range of adaptability that has been made practicable.

"Steam still continues to be preeminently the power of greatest importance, and the census returns indicate that the proportion of steam to the total of all powers has increased very largely in the past thirty years. In 1870 steam furnished 1,215,711 horse-power, or 51.8 per cent of a total of 2,346,142; in 1880 the amount of

steam power used was 2,185,458 horse-power out of a total of 3,410,837, or 64.1 per cent; in 1890 out of an aggregate of 5,954,655 horse-power, 4,581,595, or 76.9 per cent was steam; while in 1900 steam figured to the extent of 8,742,416 horse-power, or 77.4 per cent, in a total of 11,300,081. This increase in thirty years, from 51.8 per cent to 77.4 per cent of the total power, shows how much more rapidly the use of steam power has increased than other primary sources of power.

"The tendency toward larger units in the use of steam power is shown inadequately by the increase in the average horse-power per engine from 39 horsepower in 1880, to 51 horse-power in 1890, and 56 horsepower in 1900.

"The tendency toward great operations which has been such a conspicuous feature of industrial progress during the past ten years, has shown itself strikingly in the use of units of larger capacity in nearly every form of machinery, and nowhere has this tendency been more marked than in the motive power by which the machinery is driven. At the same time there has been an increase in the use of small units, which tends to destroy the true tendency in steam engineering in these statistics. For example, a steam plant consisting of one or more units of several thousand horse-power may also embrace a number of small engines of only a few horse-power each, the use of which is necessitated by the magnitude of the plant, for the operation of mechanical stokers, the driving of draft fans, coal and ash conveyors, and other work requiring power in small units. On this account the average horse-power of steam engines in use at

« AnteriorContinuar »