Imágenes de página
PDF
ePub

workshops. Reference may be made, however, to a rotary engine which was invented by a Mr. Hoffman, of Buffalo, New York, about the beginning of the twentieth century, an example of which was put into actual operation in running the machinery of a shop in Buffalo, in 1905.

This engine consists of a solid elliptical shaft of steel, fastened to an axle at one side of its centre, which axis is also the shaft of the cylinder, which revolves about the central ellipse in such a way that at one part of the revolution the cylinder surface fits tightly against the ellipse, while the opposite side of the cylinder supplies a free chamber between the ellipse and the cylinder walls. Running the length of the cylinder are two curved pieces of steel, like longitudinal sections of a tube. These flanges are adjusted at opposite sides of the cylinder and so arranged that their sides at all times press against the ellipse, alternately retreating into the substance of the cylinder, and coming out into the free chamber. Steam is admitted to the free chamber through one end of the shaft of ellipse and cylinder and exhausted through the other end. The pressure of the steam against first one end and then the other of the flanges supplies the motive power. This pressure acts always in one direction, and the entire apparatus revolves, the cylinder, however, revolving more rapidly than the central ellipse.

For this engine the extravagant claim is made that there is no limit to its speed of revolution, within the limit of resistance of steel to centrifugal force. It has been estimated that a locomotive might be made to run two hundred or three hundred miles an hour without

difficulty, with the Hoffman engine. Such estimates, however, are theoretical, and it remains to be seen what the engine can do in practise when applied to a variety of tasks, and what are its limitations. Certainly the apparatus is at once ingenious and simple in principle, and there is no obvious theoretical reason why it should not have an important future.

TURBINE ENGINES

Whatever the future may hold, however, it remains true that the first practical solution of the problem of securing direct rotary motion from the action of steam, on a really commercial scale, was solved with an apparatus very different from any of those just described, the inventor being an Englishman, Mr. C. A. Parsons, and the apparatus the steam turbine, the first model of which he constructed in 1884, and which began to attract general attention in the course of the ensuing decade. Public interest was fully aroused in 1897, when Mr. Parson's boat, the Turbinia, equipped with engines of this type, showed a trial speed of 32 knots per hour, a speed never hitherto attained by any other species of water craft. More recently, a torpedo boat, the Viper, equipped with engines developing about ten thousand horse-power, attained a speed of 35 knots. The success of these small boats led to the equipment of large vessels with the turbine, and on April first, 1905, the first transatlantic liner propelled by this form of engine steamed into the harbor of Halifax, Nova Scotia.

This first ocean liner equipped with the turbine engine is called the Victorian. She is a ship five hundred and forty feet long and sixty feet wide, carrying fifteen hundred passengers. The Victorian had shown a speed of 19 knots an hour on her trial trip, and it had been hoped that she would break the transatlantic record. On her first trip, however, she encountered adverse winds and seas, and did not attain great speed. Her performance was, however, considered entirely satisfactory and creditable.

In the ensuing half-decade several large ships were equipped with engines of the same type, the most famous of these being the Cunard liners, Carmania, Lusitania, and Mauretania. The two last-named ships are sister craft, and they are the largest boats of any kind hitherto constructed. The Lusitania was first launched and she entered immediately upon a record-breaking career, only to be surpassed within a few months by the Mauretania, which soon acquired all records for speed and endurance.

Fuller details as to the performance of these vessels will be found in another place. Here we are of course concerned with the Parsons turbine engine itself rather than with its applications.

This turbine engine constitutes the first really important departure from the old-type steam engine, thus realizing the dream of the seventeenth-century Italian, Branca, to which reference was made above. Mr. Parsons' elaboration of the idea developed a good deal of complexity as regards the number of parts involved, yet his engine is of the utmost simplicity in principle.

It consists of a large number of series of small blades, each series arranged about a drum which revolves. Between the rings of revolving blades are adjusted corresponding rings of fixed blades, which project from the casing to the cylinder, and by means of which the steam is regulated in direction, so that it strikes at the proper angle against the revolving blades of the turbine.

In practise, three series of cylindrical drums are used, each containing a large number of rings of blades of uniform size; but each successive drum having longer blades, to accommodate the greater volume of the expanding steam. The steam is fed against the first series of blades in gusts, which may be varied in frequency and length to meet the requirements of speed. After impinging on the first circle of blades, the steam passes to the next under slightly reduced pressure, and the pressure is thus successively stepped down from one set of blades to another until it is ultimately reduced from say two hundred pounds to the square inch, to one pound to the square inch before it passes to the condenser and ceases to act.

There is thus a fuller utilization of the kinetic energy of the gas, through carrying it from high to low pressure, than is possible with the old type of cylinder-andpiston engine. On the other hand, there is a constant loss due to the fact that the blades of the turbine can not fit with absolute tightness against the cylinder walls. The net result is that the compound turbine, as at present developed, appears to have about the same efficiency as the best engine of the old type.

One capital advantage of the turbine is that it keeps

the cylinder walls at a more uniform temperature than is possible even with a compound engine of the old type. Another advantage is that the power of the turbine is applied directly to cause rotation of the shaft, whereas no satisfactory means has ever been discovered hitherto of making the action of the steam engine rotary, except with the somewhat disadvantageous crank-shaft. This fact of adjustment of the turbine blades to the revolving shaft seems to make this form of engine particularly adapted to use in steamships. It is also highly adapted to revolving the shaft of a dynamo, and has been largely applied to this use. Needless to say, however, it may be applied to any other form of machinery. It would be difficult at the present stage of its development to predict the extent to which the turbine will ultimately supersede the old type of engine. Its progress has already been extraordinary, however, as an engineer pointed out in the London Times of August 14, 1907, in the following words:

"When the steam turbine was introduced by Mr. Parsons some 25 years ago, in the form of a little model, which is now in the South Kensington Museum, and the rotor of which may easily be held stationary by the hand against the full blast of the steam, who would have been rash enough to predict, except perhaps the far-seeing inventor himself, that a vessel 760 feet long, loaded to 37,000 tons displacement, drawing 32 ft. 9 in. of water, and providing accommodation for 2,500 people, could be propelled at a speed of 24.5 knots per hour, which it is hoped she may maintain over the 3,000 miles of the Atlantic voyage?

« AnteriorContinuar »